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1 Introduction

Conventional control-theoretic models for fault  detection rely on an accurate model of the systcm  being
monitored: frequently in practice no such model exists for complex non-linear systems. ‘1’hc  large ground
antennas used by the Jet Propulsion l,aboratory’s  Deep Space Network (I)SN)  to track planetary space-
craft fall into this category --- quite complicated analytical models exist for the c]cctro-mechanical  pointing
systems, but they arc known to bc a poor fit for fault detection purposes.

Wc have previously described the application of on]inc adaptive pattern recognition methods to this
problcm  [1, 2]. The systcm  operates as follows. Sensor data such as motor current, position cncodcr,
tachometer voltages, and so forth are synchronously sampled at 5011 z by a data acquisition systcm.  The
data is blocked off into disjoint windows (200 samples are used in practice) and various features (such as
autorcgrcssivc  coefllcicnts  estimated online) are cxtractcd; let the feature vector bc Q.

‘J’bc features Q are fcd into a classification model (every 4 seconds) which in turn provides posterior
probability estimates of the m possible states of the systcm  given the estimated features from that window,
p(ui [&).  WI corresponds to normal conditions, the other ~i’s,  1 < i < m, correspond to known fault
conditions.

Finally, since the systcm  has %cmory” in the sense that it is more likely to remain in the current state
than to change states, the posterior probabi]itics  need to bc correlated over time. This is achieved by a
standard first-order hidden Markov model (II MM) which models the temporal state dcpcndencc  [2].

As described in [1, 2] tbc classifier portion of the mode] is trained using simulated hardware faults. The
feed-forward neural network has been the model of choice for this application because of its discrimination
ability, its posterior probability estimation properties [3, 4] and its relatively simple implementation in soft-
ware. Also dcscribcd  in [2] at length is the design of the II MM transition matrix based  on prior knowledge of
systcm  mean time bctwccn  failure (M I’IIF)  information and other specific knowledge of the systcm  configu-
ration. An important point is that the HMM transition parameters are not learned from data as in speech
recognition —- in a sense, these “designed” 11 M M models can bc considered temporal context networks of
the Baycsian  network family dcscribcd  by l’earl and others [5].

2 I.incitations of the Discriminative HMM Model

‘1’hc  model dcscribcd  above assumes that there arc m known mutually exclusive and exhaustive states (or
“classes”) of the systcm,  w], . . . ,C+l. ‘1’he  mutually cxclusivc  assumption is reasonable in many applications
wbcrc  multiple simultaneous failures arc highly un]ikcly. lIowcver,  the exhaustive assumption is somewhat
impractical. In particular, for fault detection in a complex systcm  such as the antenna, there arc literally
thousands of possible fault  conditions which might occur. ‘1’he probability of occurrence of any single
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j condition is very small, but nonetheless there is a significant probability that at least one oft hcsc conditions
will occur over some finite time. While the common faults can be directly rnodellcd it is not practical to
assign specific states to all the other minor faults which might occur.

As discussed in [I] and [6], discriminative models directly model the posterior probabilities of the classes
given the feature data and they  assume that the classes arc exhaustive. On the other hand, a generative  model
directly models the data likelihood P(Ql~i) and then determines posterior class probabilities by application
of Ilayes’ rule (see Smyth [6] and IJawid [’i’] for further discussion). Examples of generative classifiers include
parametric models such as Gaussian classifiers and memory-based methods such as kernel density estimators
and near neighbour  models. Generative models are by nature well suited to novelty detection. Jlowcvcr,
there is a trade-off because generative models typically arc doing more modclling  than just searching for a
decision boundary, they can be less cfllcient (than discriminant  mctllods)  in their usc of tllc data.

3 Hybrid Models

A practical approach is to use both a generative and discriminative classifier and add an extra  ‘{m + 1 th”
state to the model to cover “all other possible states” not accounted for by the known m states. llcnce,  the
posterior estimates of the generative classifier arc conditioned on whether or not the data is thought to come
from one of the m known classes.

I,et  the symbol W{ I . . ..~} denote the event that the true system state is onc of the known states, and let
P(wn,+  1 IQ) bc the post&ior  probability that the data is from an unknown state. 11 cncc, one can estimate the
true posterior probability of individual known states as

fl~ilf!)  = Pd(~ilf17~{l,...,  m})P(~{l,n,}IQ)  }IQ) = Pd(~ild,w{l,...,  n]})(l  – P(”rn+lk  ?)), l~i<m (1)

where I)ci(ui Ifl, U{l,,,,,m})  is the  posterior probability estimate of state i as provided by a discriminative model.
The calculation of p(w~,tl IQ in Equation (1) can be obtained via the usual application llaycs’ rule if

?@lunJ+I ), P(@rn+I  ), and p(f?lw{l,.,.,~, }) are known, since

P(~m+  1  Ill) = ~
p(qwn,+ ~ )p(cdn}+ ~ )

P(-bm+l )P(~m+  1 ) + ?(d~{l,..,m]) ET  P(~i)

(2)

In practice we use non-informative }Iayesian  priors for p(~lwn,+]  ) (in Equation (2)) over a bounded space
of feature values (details arc available in a technical report [8]), although this choice of a prior density or data
of unknown origin is basically ill-posed. ‘J’hc stronger the constraints which can be placed on the features,
the narrower the prior density, and the better the ability of the overall model to detect novelty. If wc only
have very weak prior information, this will translate into a weaker criterion for accepting points which belong
to the unknown category.

l’he  term p(wm+l ) in Equation (2) must be chosen based on tbc designer’s prior belief of how often the
systcm  will be in an unknown state -- a practical choice is that the system is at least  as likely to be in an
unknown failure state as any of the known failure states. The p(@{l ,,,,,n,}) term in Equation (2) is provided
directly by the generative model. ‘Typically this can be a mixture of Gaussians  or a kernc]  density estimate
over all of the training data (ignoring class labels).

Integration of equations (1) and (2) into the hidden Markov model calculations is straightforward and
will not be derived — the model now has an extra state, “unknown. “ ‘1’hc choice of transition probabilities
bctwccn  the unknown and other states is once again a matter of design choice. For the antenna application
at least, many of the unknown states are believed to be relatively brief transient phenomena which last
perhaps no longer than a fcw seconds: hcncc the Markov matrix is designed to reflect these beliefs since
the expected duration of any state d[~i] (in units of sampling intervals) for a jlrx+ordcr  Markov model must
obey .

1

‘[wil  = , _ ~)ii (3)

where ~)ii is the self-transition probability of state wi.
An alternative approach to novelty detection whic}l does not require tbc use of prior densities was pro-

posed by Dubuisson  and Masson [9]. “1’his approach uses a generative model directly for classification and
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Y’igurc 1: Estimated posterior probability of normal state (a) using no 11 M M and the exhaustive assumption
(normal + 3 fault states), (b) using a HMM with a generative model (normal ~ 3 faults+ other state).

thus detects outlicrs  via distance thresholds, e.g., the distance from the mean in a parametric model, or
the distance from the nearest training set point in near-neighbour  or kernel models. The disadvantage of
threshold-based methods lies in the sc]cction of the thresholds themselves; without some hypothesis for data
from the unknown state there is no principled way to choose such thresholds.

4 Experimental Results

For comparison purposes wc evaluated the results of 2 particular models. Each was applied to monitoring
the servo pointing system of a particular DSN 34-nleter  antenna at Go]dstone,  California. The models were
implemented within the I,abView  data acquisition package running in real-time on a Macintosh 1 I at the
antenna site. ‘l’he models had previously been trained ofl-line on data collected some months earlier. 12
input features were used and the experiment consisted of introducing hardware faults into the system  in a
controlled manner at 15 minutes and 45 minutes, each of 15 minutes duration,

Figure 1 (a) and (b) show each model’s estimates over time that the systcrn  is in the normal state (space
limitations precluded the inclusion of more detailed experimental results). Model (a) uses no IIMM and
assumes that the 4 known states are exhaustive -- a single fecdforward  neural network with 8 hidden units
was used as the discriminative model. Model (b) uses a llMM  with 5 states, wl)ere  a gcncrativc  model (a
Gaussian mixture model) and a flat prior (with bounds on the feature values) are used to determine the
probability of the 5th state. The same neural network as in model (a) is used as a discriminator for the
other 4 known states. The generative lnixture  model had 10 components and used only 2 of the 12 input
features, the 2 which were judged to bc the most sensitive to system change. The parameters of the HMM
were designed according to the guidelines described earlier. Known fault states were assumed to be equally
likely with 1 hour M1’IIF’s  and with 1 hour mean duration. Unknown faults were assumed to have a 20



minute MIDF’ and a 10 second mean duration.
Model (a)’s estimates are quite noisy and contain a significant number of potential false alarms (highly

undesirable in an operational environment). Model (b) is much more stable due to the smoothing effect of
the 11 MM. Nonetheless, we note that between the 8th and 10 minutes, there appear to be some possible false
alarms: this data was clzwsified into the unknown state (not shown). On later inspection it was found that
large transients (of unknown origin) were in fact present in the original sensor data and that this was what
the model had detected, confirming the result obtained independently by the classifier. It is worth pointing
out that the model without a generative component (whether with or without the II MM) did in fact always
detect a non-normal state at the same time, but incorrectly classified this state as one of the known fault
states (these results are not shown).

5 Application Issues

The ability to detect previously unseen transient behaviour  has importani practical consequences: as well
as being used to warn operators of antenna problems in real-time, the model can also be used as a filter to a
data logger to record interesting and anomalous data on a continuous basis. Hence, potentially novel system
characteristics can be recorded for correlation with other antenna-related events (such as maser problems,
receiver lock drop during RF feedback tracking, etc. ) for later analysis to uncover the true cause of the
anomaly.

‘I%e basic  model described in this abstract has recently been approved for inclusion as a functional
requirement in the antenna controller design for all ncw IEN antennas. ‘1’hc  first such antenna is currently
being built at the Goldstone,  California, DSN site and will become operational in 1994 --- similar antennas,
also equipped with fault detectors of the type dcscribcd  here, will bc constructed in Spain and Australia in
the 1995-96 time-frame.
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